
Challenge

Spare Time Teaching

March 17, 2015

Problem

Many people who have worked with Coq knows that many tactics can use eqn:,
tactics like remember, case, and destruct. However it doesn't work with
induction which is annoying... and weird.

The challenge is to implement it (the eqn:-part should work like case and
destruct) and use it to prove some simple lemmas.

Require Import Arith List.

Tactic Notation "better_induction" ident(var)
"as" simple_intropattern(p)

"eqn:" ident(H) :=
???

Lemma works_with_N :
∀ n, n + 0 = n.

Proof.
intro n.
better_induction n as [| n’ IHn’] eqn:H.
???

Qed.

Lemma works_with_lists :
∀ xs : list N, xs ++ nil = xs.

Proof.
intro xs.
better_induction xs as [| x xs’ IHxs’] eqn:H.
???

Qed.

Inductive tree :=
| Leaf : tree
| Node : tree → N → tree → tree.

Fixpoint expand t1 t2 :=

1

match t1 with
| Leaf ⇒ t2
| Node t1’ n t2’ ⇒ Node (expand t1’ t2) n (expand t2’ t2)

end.

Lemma works_with_tree :
∀ t, expand t Leaf = t.

Proof.
intros t.
better_induction t as [| t1 IHt1 n t2 IHt2] eqn:H.
???

Qed.

2

