Challenge

Spare Time Teaching

May 11, 2015

Introduction

There is a beautiful symmetry between compilation and decompilation, unfortunately the latter is very hard to do. Therefore we have made a "toy" example.

Problem

A proper combinator is a closed term following this grammar:

Write a lambda term, decompile, that take a proper combinator and a number for how many arguments the it takes, and returns the number of applications in the combinator.

For example S takes three arguments and has three applications, whereas K takes two arguments and has zero applications.

Example

```
S \equiv \lambda \text{ f g x . f x (g x)} \equiv \lambda \text{ f g x . ((f x) (g x))}
K \equiv \lambda \text{ x y . x}
0 \equiv \text{lam s z . z}
1 \equiv \text{lam s z . s z}
2 \equiv \text{lam s z . s (s z)}
3 \equiv \text{lam s z . s (s (s z))}
\text{decompile S 3} \rightarrow^* 3
\text{decompile K 2} \rightarrow^* 0
```