## Challenge

## Spare Time Teaching

February 9, 2015

You may not add parameters or change the output. Inspired by Olivier Danvy and Mayer Goldberg.

## Problem

Write a scheme function that, given a list  $(\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_{n-1} \ \mathbf{x}_n)$  determines if the list is a palindrome  $(x_i = x_{(n+1)-i} \text{ for } 1 \leq i \leq n)$  in  $\frac{n}{2}$  recursive calls and with no auxiliary list.

## Example

```
> (ch '(1 2 2 3 2 2 1))
#t
> (ch '(1 2 2 3 2 2 1 2))
#f
```