Challenge

Spare Time Teaching

March 4, 2014

Problem

We say that a system is *Church-Rosser* (CR, also known as *confluent*) if: for all paths $A \to^* B$ and $A \to^* C$, there exists paths $B \to^* D$ and $C \to^* D$.

We say that a system has diamond property (DP) if: for all steps $A \to B$ and $A \to C$, there exists steps $B \to D$ and $C \to D$.

Visualized:

It is clear that $DP \neq CR$. But what about the other way around? Prove $CR \Rightarrow DP$ or disprove it by constructing a lambda term that does not satisfy DP (Lambda Calculus is CR).