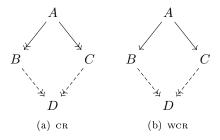
Challenge

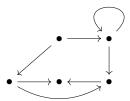
Spare Time Teaching


February 22, 2014

Problem

We say that a system is *Church-Rosser* (CR, also known as *confluent*) if: for all paths $A \to^* B$ and $A \to^* C$, there exists paths $B \to^* D$ and $C \to^* D$.

We say that a system is weak Church-Rosser (WCR) if: for all steps $A \to B$ and $A \to C$, there exists paths $B \to^* D$ and $C \to^* D$.


Visualized:

It is clear that $CR \Rightarrow WCR$. But what about the other way around? Prove $WCR \Rightarrow CR$ or make a counter example (a system that is WCR but not CR).

Example

 \to^β (beta-reduction) in Lambda Calculus is CR (therefore also WCR). Here is another system that is also CR:

